/
Tensorflow - Keras

Tensorflow - Keras

Setting Keras Environment

Prerequisites

For your convenience, you'd better install and use git bash.

Therefore, I will test on git bash or bash terminal integrated within VSCode.

Install Miniconda on Windows

Download: https://docs.conda.io/en/latest/miniconda.html

Setting Keras

Install Karas from Yaml

# Make yaml file. $ vi environment-gpu.yml name: tf-gpu-1.15 dependencies: - python=3.6 - tensorflow-gpu=1.15 - keras=2.3.1 - scikit-learn - scipy - numpy - matplotlib - ipython - jupyter - pillow - opencv - graphviz - cython - pip: - pydot-ng # Create conda env $ conda env create -f environment-gpu.yml # Enter tf-gpu-1.15 env $ conda activate tf-gpu-1.15

If not able to activate a certain conda env, add this instruction into .bashrc

. ~/Miniconda3/etc/profile.d/conda.sh

# Check out the installed packages about cuda. $ conda list ... cudatoolkit 10.0.130 0 cudnn 7.6.5 cuda10.0_0 ... keras 2.3.1 0 keras-applications 1.0.8 py_1 keras-base 2.3.1 py36_0 keras-preprocessing 1.1.2 pyhd3eb1b0_0 ... tensorflow 1.15.0 gpu_py36h2b26d6b_0 tensorflow-base 1.15.0 gpu_py36h1afeea4_0 tensorflow-estimator 1.15.1 pyh2649769_0 tensorflow-gpu 1.15.0 h0d30ee6_0 ...

 

Related content

Pytorch
More like this
ML/DL
More like this
SaltStack OpenStack Module Setting
SaltStack OpenStack Module Setting
More like this
Upgrade SaltStack Version
Upgrade SaltStack Version
More like this
SaltStack Kubernetes Module Setting
SaltStack Kubernetes Module Setting
More like this