Setting Keras Environment
Prerequisites
For your convenience, you'd better install and use git bash.
Therefore, I will test on git bash or bash terminal integrated within VSCode.
Install Miniconda on Windows
Setting Keras
Install Karas from Yaml
# Make yaml file. $ vi environment-gpu.yml name: tf-gpu-1.15 dependencies: - python=3.6 - tensorflow-gpu=1.15 - keras=2.3.1 - scikit-learn - scipy - numpy - matplotlib - ipython - jupyter - pillow - opencv - graphviz - cython - pip: - pydot-ng # Create conda env $ conda env create -f environment-gpu.yml # Enter tf-gpu-1.15 env $ conda activate tf-gpu-1.15
If not able to activate a certain conda env, add this instruction into .bashrc
. ~/Miniconda3/etc/profile.d/conda.sh
# Check out the installed packages about cuda. $ conda list ... cudatoolkit 10.0.130 0 cudnn 7.6.5 cuda10.0_0 ... keras 2.3.1 0 keras-applications 1.0.8 py_1 keras-base 2.3.1 py36_0 keras-preprocessing 1.1.2 pyhd3eb1b0_0 ... tensorflow 1.15.0 gpu_py36h2b26d6b_0 tensorflow-base 1.15.0 gpu_py36h1afeea4_0 tensorflow-estimator 1.15.1 pyh2649769_0 tensorflow-gpu 1.15.0 h0d30ee6_0 ...
Add Comment